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Abstract

Active vibration control of the shell structures with discretely distributed piezoelectric sensor and actuator patches is
investigated. The quasi-modal sensor is developed to estimate the dominant mode coordinates of the shell from the
outputs of the sensor patches, and a criterion for finding the optimal locations and sizes of the sensor elements is given
by minimizing the observation spillover. The quasi-modal actuator is also designed to actuate the designated modes by
means of modulating the voltage distribution of the piezoelectric actuator patches, and a criterion for optimal place-
ment of the actuator patches is presented based on the energy and control spillover consideration. Furthermore, the
compensators are employed to filter out the residual components with high frequencies from the estimated modal
coordinates. Based on the quasi-modal sensor and quasi-modal actuator, the independent modal control is performed
approximately to control the vibration of smart shells. The simulation examples show that the vibration of the shells
can be controlled effectively by using the presented method. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The smart shell structures with integrated piezoelectric sensor and actuator laminae have been widely
investigated in the past decade. The research work mainly focuses on modelling, finite element formulation
and vibration control of the smart shells (Tzou and Gadre, 1989; Tzou, 1992; Thrupathi and Naganathan,
1993; Koconis et al., 1994; Tzou et al., 1994; Saravanos, 1996; Miller and Abramovich, 1996; Pletner and
Abramovich, 1997; Chandrashekhara et al., 1998; Henry and Clark, 1999). Chee et al. (1998) gave an
detailed review on the modelling of the piezoelectric intelligent structures. Based on the mathematical
models, several simple control laws such as proportional and derivative (PD) method and Liapunov
method are used in active vibration control of the smart shells (Tzou, 1992). Moreover, the independent
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modal space control method, which cannot be realized satisfactorily by the traditional discrete sensors and
actuators, can be implemented by using the modal sensor/actuator designed by the distributed piezoelectric
sensor and actuator laminae.

Compared to the modelling and the finite-element method (FEM) formulating of smart shells, less
control schemes are developed for vibration control of smart shells. Although modal sensor and actuator
(Lee and Moon, 1990; Tzou et al., 1994) can be designed by shaping the electrode patterns of the piezo-
electric laminae in one dimensional case such as ring, it is difficult, if not impossible, to be applied in the
general smart shell structures. Despite some control schemes developed for smart beams and plates (Sun
et al.,, 1997, 1999a,b), which needs the fully covered piezoelectric sensor and actuator laminae, can be
generalized to shell case, it is impractical that the whole structure is covered completely by the piezoelectric
sensor and actuator layers for large shell structures. A reasonable method may be that several discretely
distributed piezoelectric patches, each of which only covers a local area on the host shell, are properly
located and used as the sensor and actuator patches to perform its vibration control.

In this paper, vibration control of the thin smart shell structures with attached discretely distributed
piezoelectric sensor and actuator wafers is investigated. Quasi-modal sensor is designed to estimate the first
several dominant modal coordinates approximately from the output voltages of the sensor wafers.
Moreover, a compensator for each mode to be controlled is used to suppress the observation spillover and
maintain stability of the closed-loop system. Also, the quasi-modal actuator is designed to generate the
desired modal forces for the designated modes by applying proper voltage distribution on actuator wafers.
Based on the quasi-modal sensor and actuator, the quasi-independent modal control of the shell structures
can be performed. The criteria for finding the optimal locations and sizes of the piezoelectric sensor and
actuator patches are given respectively based on spillover and energy considerations. Finally, simulation
examples are given to demonstrate the effectiveness of the present method.

2. Sensor and actuator equations for smart shell

Consider a thin elastic shell on which several piezoelectric patches are bonded as the distributed sensor
and actuator respectively, as shown in Fig. 1. The tri-orthogonal curvilinear coordinate system with axes
oy, 0 and o3, 1s also schematically shown in Fig. 1. The two Lame parameters for ¢ and o, axes are 4, and
A, and the radii of curvature are R; and R,, respectively. Assume that the piezoelectric patches are much
thinner than the host shell, and the composite smart shell is still thin. The piezoelectric patches are assumed
to be bonded perfectly on the host shell and the effects of the bonding material on the properties of the
whole shell are neglected.

)
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Piezoelectric
sensor patches Host shell

Piezoelectric
Fig. 1. The smart shell with discretely distributed piezoelectric transducers.
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For the case that the shell is fully covered by the sensor and actuator laminae, the output voltage
generated by the piezoelectric sensor lamina due to the strain of the shell can be derived as (Tzou, 1992)
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where u;,u, and u; are the displacements of the neutral surface in three directions; e;; and es,, the pi-
ezoelectric stress constants of the sensor layer; €33, the dielectric constant of the sensor; S¢, the effective area
of the sensor layer; 4, the thickness of the sensor, and r] and 75 are the z coordinates of the mid-surface of

the sensor lamina from the neutral surface of the shell.
The differential equations of motion of the smart shell can be expressed as

6(N11A2) 6(N21A ) 6A1 6A2
80(1 6062 N 6 [0%) + sz adl
1 [o(M 4 O(My A 04 04,
R { : a:xll 2.2 ailz S 60(1 Mo g } + Aidophin = A A
6(N12A2) 6(N22A1) 6A2 6A1
0oy 0oy Non 0o + N 8752
1 6(M12A2) 6(M22A1) 6A2 6A1 a
R { o + %3 + My, . My — %2 + A Ay phiiy = A1A>F, (2)
0 1 8(M11A2) 6(M21A ) aAl 6A2
S Mp—— M
6051 {Al |: aocl + 6062 + M 6062 230, 60(1
0 1 6(M12A2) a(Mng ) 6A2 6A1
R My —= — My —
0oy { { 0oy + Oty M 0oy " Q03
N N
+ A1A2 (i + ﬁ) +A1Azphi.l3 = AlAzF;,
R R

where p and / are the mass density and the thickness of the shell, respectively, and the membrane forces Ny,
Ny, Nip as well as the bending moments M, M,, and M), are given by
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where Y and u are the Young’s modulus and Poisson’s ratio respectively, and D = YA /[12(1 — 1?)] is the

bending stiffness of the shell. In Eq. (2), £}, F;' and F; are the forces induced by the actuator layer which
have the following form:
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where d3; and ds, are the piezoelectric strain constants of the actuator layer, V is the voltage applied on the
actuator, Y, the Young’s modulus of the actuator layer, r{ and r5 are the z coordinates measured from the
neutral surface to the mid-surface of the actuator layer.

When N piezoelectric sensor patches are bonded on the host shell instead of the one sensor lamina, the
output voltage of each patches becomes
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where the subscript i denotes the ith sensor wafer.
For the case that N, actuator patches are bonded discretely on the host shell and an uniform voltage is
applied on each patch, the voltage distribution in Eq. (5) can be expressed as

alaaZa ZV J (7)

Hj = [H (o —ou;) — H (o — o0)[[H (02 — o)) = H(op — )], j=1,2,..., Ny (8)
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in which H(-) is the Heaviside step function, and o, o, o; and o,; are the boundary coordinates of the jth
actuator patches. Egs. (1) and (2) are the sensor equation and the actuator equation respectively, which are
the basic equations for vibration control of the smart shell.

3. Modal coordinates estimation for smart shell

To perform the modal control of the shell, the modal coordinates and velocities for the modes to be
controlled should be observed. The modal coordinates will be estimated from the outputs of the sensor
patches by the quasi-modal sensor, and a criterion for finding the optimal placement and sizing of the
sensor patches will be given to minimize the errors of the estimation.

3.1. Quasi-modal sensor design

The displacements of the shell can be expanded as the superposition of the modes:

o0

u,n(OC1,0C2,f) = Z”k(t)Umk(a]7a2) m = 1727 37 (9)

k=1

where 7,(¢) is the kth modal coordinate of the smart shell, and U, (o, o) is the modal shape function.
Substituting Eq. (9) into Eq. (6), we have
V(1) = Zbikﬂk<t>7 (10)
k=1
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are the coefficients related to the locations and sizes of the sensor elements and the modal functions of the
shell.

Making truncation, and only the first M (M > max(N,, N;) is a large integer) modes of the shell being
considered, Eq. (10) becomes

{(r@} = Bl{n(@)}, (12)

where {V(¢)} € R™ is a vector of output voltages generated by the sensor elements, {5(¢)} € RM a vector
containing the first M modal coordinates of the shell, and [B] € R a matrix related to the output charges
of the sensor elements and the modal coordinates.

Eq. (12) establishes the relation between the sensor outputs and the modal coordinates which can be used
to estimate the lower N; modal coordinates approximately. To this end, rewrite Eq. (12) as

(@)} = Bil{m @)} + Bal{n:(0)}, (13)

where [B;] € R¥" and [B,] € R™™~™) are the matrices composed of the first N columns and the residual
entries of [B], respectively, and {n,(r)} € R™ and {n,(¢)} € RM ™, the vectors composed of the first N;
modal coordinates and the remaining M—N; modal coordinates, respectively.
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Rl A1 alll

s
+ €32i1; |:



3286 D. Sun, L. Tong | International Journal of Solids and Structures 38 (2001) 3281-3299

Matrix [B;] can be made nonsingular by properly placing the piezoelectric sensor patches, and therefore,
we have

{0} = B0} = B [Ba] {na(1)}- (14)

In general, the magnitudes of the modal coordinates with high order are much smaller than those of the low
modal coordinates. For this reason, neglecting the second term on the right-hand side of Eq. (14) leads to
the following approximate equation:

{m ()} = B {70}, (15)

where {#}(¢)} is the vector containing the N, observed modal coordinates which is different slightly from
{n,(t)}. The relation between the observed and the real modal coordinates can be expressed as

{m (0} = {m ()} + B [BHm (1)} (16)

Eq. (16) indicates that the estimated modal coordinates obtained from Eq. (15) are equal to the real ones
mixed with the residual modal coordinates with higher frequencies. The observed modal coordinates from
Eq. (15) contain the remaining modal coordinates, which is referred to as observation spillover. Therefore,
the above process to estimate modal coordinates is called quasi-modal sensors.

Although the quasi-modal sensor cannot give the exact modal coordinates, it separates the lowest N
modal coordinates from each other so that the residual modal components can be easily removed by low
pass filters.

3.2. Optimal placement and sizing of the sensor patches

The error vector of the estimated modal coordinates is given by

(A} = B1] ' Bl{m(0)}, (17)
and its norm can be expressed as

IA@* = {A@O} {AD} = {m(D)} [B{na(0)}, (18)
where

[B.] = [B2]" ([B1] ) [B1] ' [B2] (19)

isa (M — Ny)(M — N;) symmetric positive definite matrix.
It can be proved that the following inequality holds:

AW < Zamax (B {2 ()} {n2(1)}, (20)

where Jpax([B.]) is the maximum eigenvalue of [B,].
To minimize the observation spillover for any {#,(¢)} in Eq. (20), the maximum eigenvalue of [B,] should
be minimized, i.e.
Jy=  min )/lmax{[Be]}. (21)

Se(i=1.2,...Ns

Eq. (21) is the criterion using which the optimal locations and sizes of the sensor elements can be obtained.
The observation spillover can be greatly decreased by optimal placement of the piezoelectric sensor patches.
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4. Quasi-modal actuator design for smart shells
4.1. Quasi-modal actuator design

Substituting Egs. (3), (4) and (9) into Eq. (2), and employing the mode orthogonality, the modal
equations of motion for a smart shell can be obtained

Na

iy (2) er/%»nk(t) :chjl/}(t)v k=12,..., (22)

=1

where w;, is the kth natural frequency of the shell, and

1 .
thk /al /“2 (;FM(H/')Umk(ah 062)>A1A2 dOCl (10(27 (23)

where F°(H;) can be obtained by replacing ¥ with H; in Eq. (5), and N, is given by

3
Nk:/ / (ZUik(m,az)>A1A2dd1dO€2- (24)
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The constants ¢;; in Eq. (23) are referred to as the modal influence coefficients, which depend on both the
modal shape functions and the locations and sizes of the actuator elements.
When only the first M modes are considered, Eq. (22) can be written in the following matrix form:

{iie(0)} + [0} = [CIH{V ()},
{ii (0} + [ {n. ()} = [CIH{V (1)},

where {n.(t)} € R™ and {,(t)} € R~ are the vectors of the N, controlled modes and the M — N, un-
controlled (residual) modes respectively, {V(¢)} € R is a vector composed of the voltages applied on the
piezoelectric actuator elements, [Q7] = diag(w}, @3,..., 0} ), (2] = diag(w} ,, @} ,,...,®}), and [C] €
RYMNa and [C,] € RM~M)N are the modal influence matrices composed of the entries related to the controlled
and residual modes respectively.

For the modes to be controlled, by applying adequate control voltages, the piezoelectric actuator patches
should be capable of producing the expected modal control forces. If the modal forces for the N, controlled
modes are designated to be {/.(1)} = [f1(1), /2(¢),. .., fx.()]", then the voltages that can generate such N,
modal forces satisfy the following equations:

[CH{V ()} = {fe()}- (26)

The matrix [C.] can be made nonsingular by properly configuring the actuators, and therefore the voltages
applied on the actuators can be obtained as

o} = [c] {0}, (27)

which gives the voltage distribution to generate the designated modal forces.

It should be pointed out that the voltage designated for the controlled modes will excite the residual
modes, i.e. the control spillover will occur. Therefore, the process given above to generate the designated
modal forces by modulating the voltage distribution is called quasi-modal actuator.

Ckj =

(25)



3288 D. Sun, L. Tong | International Journal of Solids and Structures 38 (2001) 3281-3299

4.2. Control spillover estimate and optimal placement of the actuator patches

To estimate the degree of the control spillover, substituting Eq. (27) into the second equation of Eq. (25),
the spillover modal forces {f,(¢)} for the M — N, residual modes can be given as

{£(0)} = [l A0} (28)
The norm of the spillover modal forces can be obtained as

IO = LAY A0 = (LOY CHAOY, (29)
where

1= (1ed™) el eed” (30)

is a N, X N, real symmetric square matrix related to the control spillover. It can be proved that

IAOI < dmax (GO} {0}, (31)

where A, ([Cs]) is the maximum eigenvalue of [Cy]. Eq. (31) indicates that a smaller maximum eigenvalue of
[Cs] will decrease the control spillover, which will be used as a controlling factor to obtain the optimal
placement of the actuator patches.

For the actuator patches, in addition to the control spillover problem, the most important factor for the
optimal placement of actuators is how to use less control energy to produce the designated modal forces. To
this end, consider the relation between the modal control forces and the control voltages, which can be
obtained as follows from Eq. (26):

{0y (0} = VY [CT [CHV ()}, (32)
where [C.]"[C.] is a symmetric square positive definite matrix. Once again, it can be proved that
V@O = VO {70} < {0y {0} dmin([CT[C), (33)

where Ao ([Ce]"[Ce]) is the minimum eigenvalue of the matrix [C.]"[C.]. It can be seen from inequality (33)
that for any given modal control forces {f(r)}, a larger minimum eigenvalue of [C.]"[C,] will result in
smaller control voltages. Combining inequalities (31) and (33), the following criterion can be given

Jo = Sa,-(/inl,iz?.‘,Na)Ql Jmax ([Cs]) — QZ/Imin([CC]T[CCDv (34)
where Q; and Q, are weighting coefficients. In general, lmin([Cc}T[Cc]) is much smaller than Ay ([Cy]),
therefore, O, should be selected much larger than Q; so that both control efficiency and control spillover are

well balanced during optimization. The optimal locations and sizes of the N, piezoelectric actuator elements
can be obtained using criterion (34).

5. Modal control of smart shell

Based on the quasi-modal sensor and quasi-modal actuator, the modal control of the smart shell can be
performed. However, the modal coordinates observed by the quasi-modal sensor cannot be used directly
because the observation spillover may destabilize the closed-loop system. To solve this problem, the first
step is to optimally placing the sensor elements to decrease the observation spillover, and the second step is
to filter the residual components during the control process. In this section, the independent positive po-
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sition feedback control method is used to control the first N, modes of the smart shell independently. For
each mode to be controlled, a compensator is designed as follows (Fanson and Caughey, 1990):

E(1) 4 20qiéi(1) + 0PE(t) = P} (1), i=1,2,...,N,, (35)

where &;(¢) is the response of the ith compensator to the estimated modal coordinate #;(¢), {.; the damping
ratio of the compensator. The control forces for the first N, modes are designed according to the following
control law:

fi(t) = gi&i(1), (36)

where g; > 0 is the control gain. In this case, the control gains can be ecasily selected because the active
damping ratio of each controlled mode is approximately proportional to the corresponding control gain.
However, the control gains should be carefully selected so that the control voltage on each actuator element
is limited in an appropriate range.

The compensator in Eq. (35) has two functions, one is that it can remove the components with fre-
quencies higher than w; from the estimated modal coordinate n; and only the signal with frequency w; can
pass through. In other words, the compensator acts as a low pass filter through which the observation
spillover can be suppressed.

Another function of the compensator is to change the phase of the modal coordinate. The response &;(¢)
of the compensator is 180° out of the ith modal velocity #;(¢) because of the resonance. The phase shift
function of the compensator makes the control easier because it is unnecessary to observe the modal ve-
locities. Therefore, the control law in Eq. (36) can provide the active damping to the controlled modes,
although the modal velocities are not observed directly.

6. Case study: cylindrical shell

Consider a smart cylindrical shell with radius R and thickness /4. Assume that ds, = d3;. In this case, o,
and o, are replaced by the width direction coordinate x and the circumferential direction coordinate ¢. The
Lame parameters are 4; = 1 and 4, = R, and the radii are R; = oo, and R, = R.

The sensor equation of the cylindrical shell can be simplified from Eq. (1) as follows:

hs / / e 6u1 + €3 6142 +
—+— =—+u
E33Se Se 3 Ox R a(P .

62143 €3Fg auz 62143
_e3lrsa—xz+ R (%—W A1A> doy do,. (37)

V=

Substituting the above parameters into Egs. (2)-(4), and making some simplification, the differential
equations of motion for the cylindrical shell can be expressed as

Qup (N —p@u T4p @ pduy (1), (142
o2 " 2R 9¢* " 2R 0x0¢ ' R ox vw 'y P
1+/,t 62u1 1—/1 621,{2 1 62u2 1 6143 (1 —ﬂz)R a ( —,UZ)R ..
g  _Tm, 0 F = pils,
2 x0@ 2 Ox2 R O0¢?* R 0@ Yh Y
(1—p

ou 10w us WR(Quy 2 s 10w\ (1-w)R
M@x Rop R 12 \ ox* R20x?0¢> R* 0¢*

where the actuating forces £}, F; and F3' are given by



3290 D. Sun, L. Tong | International Journal of Solids and Structures 38 (2001) 3281-3299

aV
F' = —dyY, P ox
a Iy d}]YpaV
B = (1+R) R 0¢’ (39)
a 62 ry 6 14 d’;lYV
F = rad31p62 R2d21p62+ R

Eq. (39) gives the relationship between the actuating forces and the applied voltage on the piezoelectric
actuator layer for the cylindrical shell.

6.1. Case 1: a closed-form cylindrical shell

For a closed-form cylindrical shell simply supported at both ends, the displacements can be expressed as

(x,@,1) Zann YU COS Tﬂx cosng,

m=1 n=
mmnx
2 (x, ,1) Zann Vi SIN e sinne, (40)
m=1 n=1
X QD, Zznmn I/V;nn sin Tn Ccosno,
m=1 n=

where U,,, V,,, and W,,, are constants. The frequency equation can be derived as

B — i B 5 Bis
Bia By — 4 Bas 5 =0, (41)
Bis Bas By — 4

where /% = (1 — 2)pw?/Y, and the entries are given by

~mmN? (1= @P)n? 1+ pumnn _ umm
ﬁ11—<—> T r 512-‘%77 BB__W’
1—pu/mm\2 n? n 1 [/ mn\2 ]’
b= () i P BB_FJ’E[(T) W} | “2)

6.2. Case 2: an open-form cylindrical shell

For an open-form cylindrical shell with all four edges simply supported, its displacements can expanded
as the following form:

mmx T
(x, 0,1) Zann YU, cOS e sin %,

m=1 n=
mmnx nmo

3(x, @, 1) Zann YW Sin Tn sin n%o,

m=1 n=
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where @ is the central angle subtended by the shell. In this case, the entries in frequency equation (41) are
replaced by

2
mn 1 — 12 rnm\2 1 + u mnm? UM
Bun = <_> + (—) ) B> = Bis=——r

l 2R? (0] 2R 1D’ Rl
l—p/mmN\2  n’n? nm 1 [/ mmn\> 2]’
ﬁzz—T(T) +W’ /323——%» ﬁ33—ﬁ+ﬁ (7) +W : (44)

7. Numerical examples
7.1. Case 1: simply supported closed-form cylindrical shell

As an illustrative example, consider a simply supported closed cylindrical shell onto which five lead
zirconate titanate (PZT) actuator elements and six polyvinylidene fluoride (PVDF) sensor elements are
bonded. The material properties and dimensions of the system are shown in Table 1.

The first (lowest) 10 frequencies of the cylindrical shell are 1057.1, 1113.7, 1132.6, 1271.8, 1381.9, 1505.7,
1797.8, 1802.9, 1863.2 and 1880.9 rad/s, respectively.

In order to suppress the observation spillover of the quasi-modal sensor, the locations and sizes of the six
sensor elements are optimized using criterion (21). When taking M = 10 and assuming that each sensor
elements is not larger than 6 x 6 cm? and not less than 3x 3 ¢cm?, the optimal locations and sizes of the six
sensor elements can be obtained as listed in Table 2. When the weighting coefficients are chosen as O; = 0.1,
0> = 10° in criterion (34), and the same constraints are considered as the sensor optimization, the obtained
optimal locations and sizes of the five actuators are also tabulated in Table 2.

With the optimum placement and sizes of the sensor and actuator elements, the modal control of the
smart shell can be performed. The initial vibration of the shell is caused by the sudden removal of a force of
300 N acted at the point (0.4 m, 7©t/18). The vibration of the shell will not decay if without control since no
damping is considered. To control the first five modes, the control gains are chosen as g; = 10000,
g» = 8000, g3 = 12000, g4 = 9000, and gs = 14000. The damping ratios of the five compensators are all
taken to be 0.2. The first six estimated modal coordinates are obtained from the six outputs of the sensor
patches by using the quasi-modal sensor, as shown in Fig. 2. The estimated modal coordinates, after fil-
tering and phase shifting by the compensators (Fig. 3), are fed back to generate the control voltage for each
actuator patches, and hence, the closed-loop control system is established. The first five controlled modes
are shown in Fig. 4 together with the five residual.

Table 1

Material and dimensional parameters
Item Shell Actuators Sensors
Mass density (kg/m?) 8000 7600 1780
Young’s modulus (GPa) 210 63 2
Poisson’s ratio 0.3 0.3 0.3
Piezo-constant ds; (m/V) - 370x 10712 30x 10712
Thickness (m) 0.001 0.0004 0.0001

Length (m) 1.0
Radius (m) 0.3
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Table 2

The optimum locations and sizes of the actuator and sensor elements for the closed-form cylindrical shell

Piezoelectric element number

Central coordinate (m, rad)

Length (cm)

Central angle subtended by the
element (rad)

Sensor 1 (0.4279, 1.1235) 3.0695 0.1292
Sensor 2 (0.3951, 4.4922) 4.5193 0.1265
Sensor 3 (0.5190, 2.4600) 5.1552 0.1842
Sensor 4 (0.4199, 4.1451) 4.8780 0.1022
Sensor 5 (0.4324, 2.9533) 4.7208 0.1936
Sensor 6 (0.4365, 6.1231) 3.6162 0.1079
Actuator 1 (0.4400, 2.6219) 5.2438 0.1412
Actuator 2 (0.5015, 0.8360) 5.0335 0.1611
Actuator 3 (0.5042, 1.1376) 4.9011 0.2000
Actuator 4 (0.4864, 0.5045) 3.7662 0.1982
Actuator 5 (0.4446, 3.9917) 3.0007 0.1879
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Fig. 2. The six observed modal coordinates by the quasi-modal sensor.

It can be seen from Fig. 2 that the estimated modal coordinates can be made very close the exact ones
shown in Fig. 4 by using the optimal locations and sizes of the sensor elements. The remaining high fre-
quency components in the estimated modal coordinates have been further removed by the compensators, as

shown Fig. 3.

Fig. 5 gives the time history of the displacement in width direction on point (0.01 m, n/3), circumferential
displacement on (0.5 m, /4) and the transverse displacement on (0.5 m, n/8). The control voltage distri-
bution of the optimally placed actuator elements is shown in Fig. 6. Fig. 5 shows that all the displacements
of the shell in three directions are suppressed effectively in 0.5 s. Since the remaining modes are with higher
frequencies than the controlled ones, they can be easily dissipated even by a light damping of the structure
in practice. The control voltages in the five actuator elements are well balanced and their peak values are
less than 220 V because of the optimal placement of the actuator elements.
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Fig. 3. The outputs of the five compensators.

7.2. Case 2: simply supported open-form cylindrical shell

As a second simulation example, consider an open portion of a cylindrical shell with four edges being
simply supported. On both surfaces of the open shell six PVDF sensor elements and five PZT actuator
elements are bonded respectively. The dimensions and properties are the same as the first example except
that R=12 m and ¢ = n/2.

Using Egs. (41) and (43), the obtained lowest 10 frequencies of the curved panel are 453.45, 469.48,
472.47, 518.88, 529.89, 586.41, 650.09, 670.53, 768.28 and 807.59 rad/s, respectively. In this case, the op-
timization of the locations and sizes of the sensor and actuator elements are highly needed because of the
close spaced modes of the open shell. The optimized locations and sizes of the sensor and elements under
the constraints same as the first example are listed in Table 3.

Sudden removal of a force of 20 N acted at point (0.4 m, 0.28 rad) from the shell causes vibration of the
shell, the first five modes of which will be controlled using the present method. In this example, the damping
ratios of the five compensators are taken as 0.2, 0.2, 0.2, 0.1 and 0.1, and the control gains are chosen as
1500, 1200, 1200, 1000 and 1000. The first six estimated modal coordinates the outputs after filtered by the
compensators, and the first ten modal coordinates are shown in Figs. 7-9. The histories of three dis-
placements at the selected points are plotted in Fig. 10, and the control voltages applied on the actuator
elements are depicted in Fig. 11.

Compared with the modal coordinates in Fig. 9, the observation spillover of the estimated modal co-
ordinates still exists although the sensor elements have been optimally configured. After being filtered by
the compensators with small damping ratios, the residual components in their outputs are decreased re-
markably. Consequently, the closed-loop system is stable, as demonstrated in Figs. 9 and 10.

It should be pointed that the modal control is not as effect as the plate case (Sun et al., 1999a,b) because
the slight observation spillover still exists in the outputs of the compensators due to the fact that the fre-
quencies are closely located. Therefore, the amount of the sensor elements should be increased and much
larger than that of the controlled modes for the shells with close spaced frequencies.
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The optimum locations and sizes of the actuator and sensor elements for the open-form cylindrical shell

Piezoelectric element number

Central coordinate (m, rad)

Length (cm)

Central angle subtended by the

element (rad)

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6

Actuator 1
Actuator 2
Actuator 3
Actuator 4
Actuator 5

(0.3346, 0.3696)
(0.8216, 0.6307)
(0.5702, 0.9214)
(0.4418, 0.1239)
(0.7452, 1.4470)
(0.5739, 1.1937)

(0.5224, 0.9753)
(0.3995, 0.0834)
(0.3167, 0.6733)
(0.3811, 1.4677)
(0.5605, 0.3704)

3.6944
5.9613
5.8494
3.0001
5.7224
5.9996

5.4475
3.9700
6.0000
5.2187
5.9992

0.0273
0.0454
0.0500
0.0280
0.0254
0.0319

0.0417
0.0500
0.0500
0.0413
0.0405
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Fig. 7. The estimated modal coordinates obtained by the quasi-modal sensor.
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Fig. 8. The outputs of the five compensators.

The control results show that the first five modes are controlled successfully within 1 s and the peak
values of the control voltages are less than 200 V. However, the entire vibration of the shell is not controlled
effectively because the natural frequencies of the modes are very close and the contributions to the shell’s
vibration of the residual modes are important. In order to achieve satisfactory results, more modes should
be controlled for the shell structures.
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Fig. 9. The lowest 10 modal coordinates with the first five controlled modes.
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Fig. 11. The control voltage distribution on the actuator elements.

8. Conclusions

In this paper, modal control of the thin shell structures is studied using discretely distributed piezo-
electric elements. The quasi-modal sensor is designed to observe the main modal coordinates of the smart
shell, and a simple criterion for finding the optimal location and sizes of the sensor elements is given so that
the observation spillover can be minimized. Also, the quasi-modal actuator is developed to generate the
designated modal control forces. Similarly, a criterion for optimizing the locations and sizes of the actuator
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elements is also given in which both the energy and control spillover are considered. In addition, a com-
pensator is used to each mode to perform the modal control of the smart shell independently which can
further suppress the observation spillover. The simulation results show that the modal sensor can suc-
cessfully provide modal signals used in the modal control of the shell although its basic frequency is high,
provided that the proper amounts, locations and sizes of the sensor and actuators are used. As a result, the
vibration of the shell can be suppressed effectively and the control voltages on the actuator elements are
distributed in a balanced manner due to optimal placement of the actuator elements. The present method is
suitable for vibration control of the large shell structures partially covered by the piezoelectric layers.
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